1. Introduction: From Types to Processes

Within the Malthusian frame, population well-being was always threatened by a “naturally” excessive demographic growth in a world of scarce resources. To avoid the positive check of mortality, the prudent restraint of marriage appeared as the only efficient option. From the second edition of his famous Essay published in 1802, Malthus had this intuition that was considerably strengthened one hundred fifty years later by Hajnal (1965) when he drew a line going from Saint-Petersburg to Trieste and identified on the West side the so-called European Marriage Pattern of late marriage and high proportion of final celibacy. From the 1970s, Peter Laslett and many followers demonstrated that nuclear households were dominant in this area since centuries. In an effort that revealed to be decisive for a proper integration of the historical demography and family history perspectives, Hajnal came back in 1983 with a text on household formation that described the central position of the life cycle service in delaying the age at first marriage while providing various capitals to young adults, and distancing the generations before a neolocal establishment. Todd (1990) showed however that in several parts of preindustrial Western Europe also existed a nuclear family system without life cycle service, as well as stem family societies, a multiple family household system, and some marginal types. This last synthesis has been severely criticized and in 1998, Wall and Fauve-Chamoux explicitly wrote that they could not provide a better alternative and that it was better to give-up. The typological approach reached a dead end. However, demography moved from the populations to the families and offered its analytical tools to investigate the associations of behaviors and structures forming processes at various moments of the family life course. Recent researches focalize on configurations and living arrangements, as well as on multivariate statistical approaches (logistic or Cox) about the factors explaining timing and prevalence of several transitions along the life course, transitions that, however, are considered isolated from each other.
In this paper we look at household formation processes in an original perspective. From the previous researches, we keep that marriage is still seen as the most important brake to population growth, but is not perceived anymore as an isolated event; its interaction with mobility and role in the household formation are widely taken into account by the historians. Italian and Spanish scholars have been pioneers and also the more explicit while looking at the impact of various migration systems on family lives and demographic regimes (see the section about Casalguidi below). Carlo Corsini (2000, 18) concluded: “Any family system could not maintain itself but through controlling marriage and migration solutions. Migrations and marriage appear to be the most sensitive and important factors of family behavior … in historical populations, characterized by 'natural' fertility and when mortality is depending mostly on external elements”.

Our research group does see marriage as one possible event, others being leaving the parental home, first conception and first birth, their calendar and successions forming trajectories. We make use of individual longitudinal data. Settings include Casalguidi, a village in Tuscany, two rural samples in East Belgium, Ardennes and the Pays de Herve, Scania, a rural area in Southern Sweden, all being preindustrial and pre-transitional. Each will be more specifically discussed later.

Through a sequential approach not exclusively focused on marriage, first we want to overcome the intrinsic difficulties of comparing marriage patterns throughout time and space. Intrinsic since the legal or religious nature of marriage as well as its economic function highly varied throughout cultural, social and economic areas. If comparative studies mortality or fertility in different periods and locations are based on almost universal definitions of death and birth, it is quite clear that a marriage was not the same event, let say in Sweden and Japan in the early 19th century. We consequently propose an alternative approach. All societies have formal and socially accepted events sanctioning transitions from one stage of life to another. Marriage has always represented one of the most important transitions in the individual life course, both in past and in contemporary societies (Hareven and Masaoka, 1988). Indeed, we believe that a correct approach to comparative studies on marriage and its role across different societies and populations should begin from the fact that in almost every society, marriage represented the socially accepted access to reproduction, and was consequently an essential precondition for the biological survival and continuity of families and populations. In this
respect, marriage should be seen as a transition point on the “road to reproduction” and analyzed in relation to other turning points in the life course, i.e. leaving home, family formation, household headship, inheritance transmission (Shanahan, 2000).

Our first results (Dribe, Manfredini and Oris forthcoming) have first partially challenged the famous East-West differences. While the maximum difference in mean ages at marriage between the studied populations was 12 years for men and 14 years for women, the corresponding maximum difference in age at first birth was about 8 years for both men and women. Looking instead at the difference between the European population closest to the Asians in terms of ages at first marriage and first birth, the differences for first marriage was about 9 years for men and 10 for women, while the corresponding differences for age at first birth was 5 and 6. Thus, even though Asian families started reproduction several years earlier than European families, the differences were considerably less for ages at first birth than for first marriage. In other words, we see considerably more similarities in family formation when looking at the start of childbearing than when we only look at marriage.

Table 1. Distribution of all possible trajectories (%) from living in the parental home to experiencing a first legitimate birth

<table>
<thead>
<tr>
<th>Trajectories</th>
<th>MEN</th>
<th>WOMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>lh-fm-fb</td>
<td>59.4</td>
<td>12.9</td>
</tr>
<tr>
<td>lh-fb-fm</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>fm-lh-fb</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>fm-fb-lh</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>fb-fm-lh</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>fb-lh-fm</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>lh/fm-fb</td>
<td>12.9</td>
<td>19.9</td>
</tr>
<tr>
<td>fb-lh/fm</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>fm-fb</td>
<td>21.0</td>
<td>57.0</td>
</tr>
<tr>
<td>fb-fm</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Other</td>
<td>5.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>N</td>
<td>505</td>
<td>1096</td>
</tr>
</tbody>
</table>
Secondly, only for the European samples and one Japanese, we draw a first picture of the trajectories to legitimate reproduction through a simple alphabet (lh=leaving home, fm=first marriage, fb=first birth) with a sequential structure (- means a succession, / a simultaneity of events). Results shown in Table 1 illustrate the many roads young people could take to reach a first legitimate birth and already demonstrate that although a wide literature opposes collectivist Asian societies to individualistic European ones, the Asian had not necessarily the most ordered life courses and a high variety existed within Europe, and even within some European societies.

Although we were happy with those first results, two limitations have to be acknowledged. First, we just observed the sequences between the events but not the spell duration. In other words, two “roads to reproduction” “lh-fm-fb” could seem exactly the same but it is possible that one left home at 14, stayed in life cycle service during 15 years before a marriage at 29, while for the second one those values could have been respectively 18, 2 and 20. Second, if we cross-tabulate the possible trajectories to first birth with socioeconomic status (SES), we face many little numbers that are difficult, if not impossible, to interpret. And without the timing and SES, we cannot contribute to a renovation of the Malthusian frame.

In this essay, we make use of an innovative approach within the statistical toolkit of life course studies, i.e. sequence analysis. Our main objective is not only to compare across settings but essentially to look at internal variance within each population considered, and to explore the relationships between family systems and socioeconomic structures at a micro level. Using optimal matching to systematically analyze the trajectories and cluster analysis to classify them, we demonstrate that internal variations are important to understand a given family and economic system and must be part of a comparative exercise.

2. Data and Methods

Local Sources and Data

The analysis is based on 34 year long yearly state sequences from age 12 to 45 for three regions: Scania (S), Casalguidi (I) and East Belgium (B).

Life-sequence data have been reconstructed through different techniques according to the types of sources and information available in each country. Differences concern also the way in which SES was reconstructed according to socioeconomic information available on the respective country sources.
In *East Belgium* two samples have been integrated, one in Ardennes with the parish of Sart and one in the Pays de Herve with a cluster of three municipalities (Charneux, Clermont, and Neuchâteau) (Neven 2003). Life-sequence data from 1812 to 1900 have been reconstructed from the source that made the wealth of Belgian historical demography, i.e. the population registers. This data source is based on a census, then each household sheet was copied on one page in a large book where each individual was listed with mentions of family name, given name, age or date of birth, birth place, matrimonial status, relation to the household head, occupation. The greatest originality is that during ten to twenty years (until the next census) all the demographic events were added with their exact date: deaths, out-migration, marriages. In case of birth, a new line was written at the bottom of the household description. The same for an individual immigrant joining a local household while an immigrant new family was written on an empty place. Since this updating process was sometimes irregular children who died young are often missing but we used the civil registration to correct this bias. Out-migrants who did declare their exit were also identified through the linkages of the successive population registers.

However, when a marriage happened and we observed the bride and the groom forming a new household (or one of the spouse joining the household of the other one), we assumed that this mobility happened in the same time that the marriage. In those cases, the simultaneity of events is just the result of a reasonable assumption in a region where the rule of neolocal establishment was the norm.

SES classification reflects both a simple social structure and the absence of systematic tax information in the Belgian local archives. We can use the occupation which is systematically mentioned in our sources, although it implies many missing data for the teenagers and for women. The low SES are mainly the daily laborers and other unskilled. The medium SES is the heart of those rural societies since are here the peasants (cultivators, a few farmers). Artisans are in this group in the Ardennes sample and the low SES in the Pays de Herve sample since in this region they are proto-industrial workers and faced quite hard times during the studied period, before of the industrial revolution in the neighboring city of Verviers. An upper class is almost inexistent.
For **Scania**, the data used is based on local population registers for five rural parishes: Hög, Kävlinge, Halmstad, Sireköpinge and Kågeröd. They are all located about 10 kilometers from the coast of the western parts of Scania, which is the southernmost province of Sweden. The continuous population registers have been linked to vital events to avoid possible under-registration as well as to poll-tax registers (*mantalslängder*) which provide yearly information on landholding. The database contains all individuals born in the different parishes, or migrating into them. Instead of sampling any particular group (a birth cohort for example), each individual is followed from birth, or time of arrival to the parish, to death, or migration out of the parish. In addition to migration over parish borders, the registers allow us to follow individual movements into and out of households, which is a necessary requirement in order to study life course transitions. The data has previously been used to study leaving home (Dribe 2000), family migration (Dribe 2003), marriage (e.g. Dribe and Lundh 2005, 2009, 2010) and fertility (see e.g. Bengtsson and Dribe 2010).

The selected parishes are compact in their geographical location, showing the variations that could occur in a peasant society with regard to size, topography, and socioeconomic conditions, and they offer good source material. The agricultural sector in Sweden, and Scania, became increasingly commercialized during the early nineteenth century. New crops and techniques were introduced. Enclosure reforms and other reforms in the agricultural sector influenced population growth. The main problem with the data is the high rates of migration which makes the proportion of the population observed for the entire period from age 12 to age 45 rather small. More seriously, however, the study population is highly selected among the more well-to-do landowners, because they were much more likely to remain in the same parish as they were born and raised. This needs to be kept in mind when comparing the results presented here to previous results in the same area.

For Italy, more exactly for the parish of **Casalguidi** in Tuscany, data come from crosschecking of information between *Status Animarum* and parish registers of baptism, marriage and death. The first source was a sort of census the parish priest recorded each year by listing all the households who lived within the parish boundaries. The members of each household were listed individually, specifying name, sex, age, marital status and relationship to the household head. The annual series of *Status Animarum* between 1819 and 1859 is available. By integrating such information with life events taken from parish registers, it has
been possible to reconstruct household and individual life-histories and to trace life-sequence trajectories between birth of ego and first birth from ego.

While for birth and death we have precise data on event dates, for marriage this is only partly true. In fact, exogamous marriages between local men and foreign women were celebrated in the bride’s parish, leaving no trace in local registers. The only information we have is the year in which the newlywed bride entered husband’s families on Status Animarum. Thus, in some sequences the simultaneity of multiple events is only apparent, actually only the year of occurrence is known, not the precise date. As for leaving home, it is sometimes an indirect information. In fact, we assume that individuals who were present at time t but not at time t+1 on Status Animarum and who were not recorded on the death register are to be considered as leavers.

Data on SES refer to household taxation level. Tax information were recorded on annual basis so that it has been possible to define SES each year individuals spent in the village. Three major groups of taxation were considered: high-tax group, which contains the richest and wealthiest households, the medium-tax group, formed by some sharecroppers, shopkeepers and artisans, and finally, the low-tax group, which is made up by the most indigent and poorest people living in the village such as daily laborers.

Methods

The states are defined from three basic events, namely leaving home (LH), first marriage (FM) and first observed birth (FB). They are defined in Table 2

<table>
<thead>
<tr>
<th>Code</th>
<th>Label</th>
<th>Experienced events</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>At home</td>
<td>None</td>
</tr>
<tr>
<td>LH</td>
<td>Left home</td>
<td>LH</td>
</tr>
<tr>
<td>CH</td>
<td>Child at home</td>
<td>FB</td>
</tr>
<tr>
<td>C</td>
<td>Child out home</td>
<td>LH and FB</td>
</tr>
<tr>
<td>MH</td>
<td>Married at home</td>
<td>FM</td>
</tr>
<tr>
<td>M</td>
<td>Married</td>
<td>LH and FM</td>
</tr>
<tr>
<td>MCH</td>
<td>Married w/child at home</td>
<td>FM and FB</td>
</tr>
<tr>
<td>MC</td>
<td>Married w/child</td>
<td>LH, FM and FB</td>
</tr>
</tbody>
</table>

For cases for whom observation starts after age 12 and that have not experience any of the events (leaving home, first marriage, first birth) at their first observation, we backward
completed the sequences with the state H (Home). Likewise for cases falling out of observation before age 45 and that experienced all 3 events at their last known state we forward completed the sequences with the state MC (married w/child). Then we selected only cases with less than 15 missing states in their sequence. Resulting trajectories are shown on figure 1.

Figure 1. Sequences of transversal distributions, by region (both sexes)

The, we conducted a cluster analysis for each of the regions, separately for males and females. We computed for that pairwise dissimilarities between the sequences by means of the optimal matching (OM) metric with unit indel cost and substitution costs estimated from the observed transition rates. The clusters were obtained by first running a hierarchical analysis from these OM distances by means of Ward’s criteria. The medoids of the 4 cluster solution were then passed as starting point for refining the clusters with the partitioning around medoids (pam) method (Kaufman and Rousseeuw, 2005).
We grow also regression trees for our sequences. They are obtained by searching first among all covariates the one that permits the best binary split, i.e. the split for which we get the highest R^2. This operation is then repeated locally at each obtained node. The growing stops when the split is not significant. We used a 5% p-value limit for Scania, 1% for Casalguidi and 0.5% for the Ardennes. We set also the maximal tree depth to 4.

3. East Belgium

We can immediately move from the theory to practice with the East Belgian case. Ardennes and the Pays de Herve were the two rural areas of this part of Belgium, separated by the river Vesdre where was located a pioneering centre of the industrial revolution in continental Europe, the growing agglomeration of Verviers. That is to say that the two regions experimented in the first half of the 19th century a collapse of their proto-industrial activities and a consequent “ruralisation”. After a period of tensions and decline in the economic well-being the second half of the nineteenth century was a time of betterment because the population in excess out-migrated to industrial towns and the growing demand of food from the urban areas benefited to the peasants. The agricultural crisis of 1873-1890 just accelerated ongoing changes (Neven 2002).

Figure 2. Sequences of transversal distributions, by sexes, in East Belgium

![East Belgium (B), women](image1)

![East Belgium (B), men](image2)

Figure 2 shows a pattern typical of a nuclear family system without life cycle service. The “left home” status seems almost absent. We observe several transitional statuses between living in the parental home and having established his/her own household: 6 to 9 percent of those who had a first legitimate birth were before unmarried mothers or fathers! What
demonstrates the ability of the society to integrate some marginal trajectories and regularize. A stem family phase was also frequent although the normal destination remained the neolocal establishment. It reflects the tension inherent to a demographic regime where age at marriages and rates of final celibacy were extremely high (Alter & Oris 1999, Neven 2003). Considering the absence of life cycle service, women experienced their transitions younger than men, but males and females figures are very similar.

Coherently, the optimal matching procedure resulted in a distinction between fours “families” of trajectories to first legitimate birth, both for men and women. As far as the former are concerned, the timing of transitions to adulthood is the discriminating factor for the three first groups. Indeed, while the average at first marriage for males was around 30, type 1 brought together 32 percent of the trajectories having their set of transitions around 33. For type 2, with almost 39 percent of the population, the turning point was much earlier, with the median around 25. Finally, type 3 was less important in size (12.5 percent) and reached a first legitimate birth very late, with a transition phase around 40! Tamara Hareven explained at

Figure 3. Clusters of living arrangements sequences. Males, East Belgium
which point marriage is a normative transition with a “proper age at marriage” and social stigma on those who did not experiment the transition, especially the “old” unmarried. We here observe a clear distinction between those who broke the secular pattern of later marriage and have been pioneers of a modernization in those remote rural areas of East Belgium (type 2), versus those who respected the norm and married late (type 1), while a little group arrived to avoid final celibacy and the biological extinction at the very last moments (type 3). Without surprise, this latter group had the highest density of transitional statuses. Those results are quite original and unexpected.

The last group is not such a surprise although it demonstrates an interesting internal diversity. Indeed, within a dominantly nuclear family system, 17 percent of the males followed the stem family rules, staying in the farm to take over the ownership or the tenure and cohabiting with the old parents until their death. This is the type 4 on figure 3, and as shows this graph, their transitions were less concentrated, more scattered on a wide range of age from 22 to 38.

The female pattern was similar with 39 percent – almost one about four – women who transited early and abruptly around 23 (type 3 on figure 4), while 31 percent had a “late” transition around 29 (type 1), and 17.5 percent a very late transition around 37 (type 2). Type
4 brought together those who went through a stem-family phase but also those who had an illegitimate child and were not expelled by their parents (status ‘child in parental home’). Perhaps this is this parental / family support that helped them to finish married.

Figure 5. Sequence regression trees for East Belgium

With the sequence regression trees, we wanted to see at which point sex (gender) and SES were the factors explaining this diversity in timing and household formation rules. As we can see on figure 5, sex indeed explodes the initial root and divides the males and females trajectories. Rules and distributions were however quite similar, only the more precocious timing of the women doing the differences. Among men, the splitting procedure has separated
the few males without occupation and the daily labourers from the peasants and the modest local elites (the middle class). The former have a more abrupt and earlier transition what can easily be understood since daily labourers did not had land or patrimony to preserve. We already observed they were consequently more free to fix the timing of their marriage and choose their partner (Alter & Oris 1999; Neven 2003) and we find a confirmation on the whole process of transition to reproduction.

4. Scania

The Scanian family system can be characterized as nuclear with a strong presence of life cycle service (see Dribe 2000). Especially among the landless children left home between ages 15 and 20 and worked as servants in different households before getting married in their later twenties. During the prolonged period between leaving home and marriage servants from landless origin worked in a large number of peasant households, often moving every year, or at least every other year (see Dribe and Lundh 2005a). For landholding peasants (freeholders, tenants on crown land or tenants on manorial land) the situation was different because of a much higher demand for labor in their parental households. They left home several years later than the landless, but it is still clear that a majority passed through a phase of service before marriage and taking over a farm of their own. Because of the strong social selection in the data used in this analysis the pattern shown in figure 6 resembles that of the landed groups, with a rather late age at leaving home and a short period of service before marriage. The nuclear family system is however highly visible in the figure, and the contrast with the Italian community is particularly striking.

It is also clear that the sequence to reproduction differ substantially between men and women, with men leaving home earlier and to a higher extent than women, which also seems reasonable given that we look at a population with a big overrepresentation of landed peasants. Apart from these gender differences, there is not much clustering visible in the data, indicating a rather ordered transition to adulthood; a finding which was also previously made in an Eurasian comparison using simpler methods (Dribe, Manfredini and Oris forthcoming). However, tanks to the optimal matching and clustering techniques emerges a more nuanced picture.
Indeed, figures 7 and 8 show first that the male selected population can be disentangled in three groups and the female one in only two subpopulations, while the same techniques identify four clusters in East Belgium and Casalguidi, for both sexes. This is a confirmation of the homogeneity of the Scanian society where one road to reproduction was highly dominant (table 1).
However, remains a room for some diversity, even in this quite coherent social and cultural environment. Among males, on figure 7 Type 2, with 39 percent of the 192 trajectories studied here, represents to some extent the ideal type of this nuclear family system with life cycle service with an early age at first leaving home, a long life cycle service and a late age at marriage almost immediately followed by a legitimate birth, a pattern that is associated to the low socioeconomic status in Scania (Dribe 2000). Type 1 (43 percent) is on the contrary the extreme illustration of the landed peasant transitions to adulthood already discussed above. Type 3 isolates a pattern that was previously perceived (Dribe 2000) and is measured here – with however the uncertainty resulting from the social selection of the sample. Some 18 percents of the trajectories to legitimate reproduction concerned male heirs who barely had a life cycle service experience, but stayed at home and took over the farm, contracting a care arrangement with the retired parents. A short stem family phase is consequently present in this pattern.

Figure 8. Clusters of living arrangements sequences. Females, Scania

Among women (figure 8), the first group is dominant (69 percent of 233 trajectories) and once again express the social selection of the Scanian sample, with a pattern that was typical of the upper class daughters. Inversely, the 73 trajectories belonging to type 2 were typical of
the daily labourers with a long life cycle service before a late marriage and access to reproduction.

Figure 9. Sequence regression trees for Scania

The sequence regression tree essentially contrasts the internal structures in the Belgian and Swede societies. Indeed in east Belgium, sex was the first factor of division, then SES, and timing differences were the main source of variation among the groups. In Scania SES created the first node, and it is only within the high SES on one side, the medium and low SES on the other side, that sex appeared as a factor of differentiation. In the various "families" of trajectories we also observe timing variations among the Scanians. But the prevalence and
duration of life cycle service was clearly the main element of discrimination among the groups.

5. Casalguidi

Casalguidi is a large village in the province of Pistoia that, during the period of our study, was administratively part of the Grand Duchy of Tuscany. Between 1819 and 1859, the population averaged around 2,400 inhabitants, showing a constant growth despite the cholera epidemic of 1854-55 (Breschi and Manfredini, 1998).

Like many other communities of nineteenth-century Tuscany, Casalguidi was primarily a rural society where about 75% of adult people were employed in agricultural labours. Despite this apparent uniformity, the various agricultural categories were marked by considerable differences in demographic behaviour, migratory attitude, family formation systems, household structure, and, finally, socioeconomic status (Barbagli, 1984; Kertzer and Hogan, 1991; Viazzo and Albera, 1992). Especially day labourers, on the one hand, and sharecroppers, on the other hand, represented the traditional dichotomy of the Tuscan countryside. Sharecroppers, tenants and some noble families married later, followed a patrilocal system of living arrangement after marriage, and lived in large and complex households. On the other hand, day labourers married earlier, had a neolocal family formation system, and lived in simple family groups, formed by only one biological nucleus (Della Pina, 1990; Barbagli, 1990; Rettaroli, 1993). The diffusion of patrilocality among men puts the Italian sharecropping society in a quite different position with respect to the two Northern European populations. This is quite evident in figures 1 and 10, where Casalguidi emerges as the society in which the role of the “Married with child at home” trajectory to first birth for men is most important and relevant among overall sequences.

The differences in the marriage pattern were the consequence of a different tie with the land (Poni, 1982; Doveri, 2000). Sharecroppers lived on the farm they cultivated for an absent landowner. The contract tied the whole family group to the landowner and provided the equal division of the crop between the sharecropper and the landowner. No member of the sharecropping household was allowed to work outside the farm. Each year the contract had to be renewed and one of the key points was the capacity of the sharecropping household to guarantee an adequate quantity of crop to the landowner (Giorgetti, 1974; Pazzagli, 1973). Thus, one of the main concerns for sharecroppers was to preserve an adequate working force within the household by adopting specific demographic behaviours, such as higher fertility,
expulsion of exceeding and less productive members, and a patrilocal arrangement after marriage for men.

Day labourers had no tie with the land since they did not live on the farm, but moved around in search of farmers offering them the opportunity to work for some time. When the demand for agricultural labours declined, day labourers could find employment in poor artisan activities, so that the two groups were so easily interchangeable that they had similar nuptiality patterns and family formation systems. Mobility was their main characteristic, along with neolocality. For day labourers, the familial labour force was not the central factor for finding or maintaining a job, and large households were not fit for their frequent movements and unsustainable for the resources of this social category. As a consequence, the members of those nuclear households, both men and women, left the native family on marriage.

Figure 10. Sequences of transversal distributions, by sexes, in Casalguidi

Our analysis proves and confirms such an internal dichotomization of this rural society in terms of male trajectories to first birth. More clearly Type 1 (23 percent of the trajectories) and Type 3 (36 percent) of figure 11 represent such a differentiation in this sharecropping society. Limiting the analysis to figure 11, it is clear that Type 1, which involves the largest share of Low SES group, represent the typical pattern of daily labourers: People left home, got married and then had a child out home. Type 3, vice versa, is typical of sharecroppers and tenants: Men stayed home, got married and had children at home, in their native household. Type 4 (19 percent) is a variant of type 3, with however very late transitions. Type 2 (22 percent) shows people who inscribed their trajectories within the sharecroppers system but to
some extent failed, since at the end they left Casalguidi. This is a confirmation that the relatively privileged position of the members of this socioeconomic group was always threatened.

Figure 11. Clusters of living arrangements sequences. Males, Casalguidi

As far as women are concerned, figure 12 proves that women usually left home on marriage and then had their first child outside the native household. Departure on marriage could be in some cases preceded by some time spent as domestic outside the native household. This was not unexpected as women had a minor economic role as they had a minor role in fieldworks. Their departure on marriage could be a way to strengthen family alliances and a way to relieve the household economic burden.

If we look more in-depth at the groups of figure 12, type 1, with 14 to 15 percent of the 425 observed trajectories, involves women who lived home after marriage for some time but then they (and her family) left. It would seem a temporary permanence in the parents’ house before leaving to live on her own, but the interpretation of this departure is not clear. Types 2 (21 percent) and 4 (36 percent) are quite similar trajectories but missing data (out-migrations essentially) at the end of type 2 model. This trajectory describes the traditional female
pathway to reproduction: women left home on marriage, formed a brand new family (neolocalism) or joined parents-in-law household (patrilocalism). Finally, type 3 reveals a significant (29 percent of the trajectories) and unexpected internal diversity since in this dominantly patriarchal society there were cases of matrilocalism.

Figure 12. Clusters of living arrangements sequences. Females, Casalguidi

The sequence regression tree confirms the importance of the social stratification in rural societies that were by far not homogeneous. In Casalguidi like in Scania the first node is created by SES position, sex splitting the groups only at the third or fourth levels. However, the socioeconomic status "H" (in parental home, no indication about the individual occupation) is ambiguous and difficult to interpret. It is obviously not neutral since at the second and third level we find an opposition between members of this "status" and those of low, medium or unknown statuses (level 2) or belonging to all the known SES, low, medium and upper (at level 3).
6. Preliminary conclusions

It is clear that this paper is a first essay and this version a first draft. We realized that the Swede sample has been built on more restricted bases that the two other ones, with a serious social bias that is less apparent in Casalguidi and East Belgium.

But this "technical" problem, this version already shows at which point the usual approach of household structure or living arrangements can hide the complexity of the real world and real live trajectories. If we come back to figure 1, we face three ideal types: a nuclear family system with life cycle service, another one without, and a patrilocal / patriarchal complex family system. But looking inside, we discovered that on the roads to reproduction, men and
women could respect various set of rules and that in each community, an internal diversity could be demonstrated and measured. On one side it remains that Southern Swede males and females had the most homogeneous trajectories, but even there landed and landless peasants followed different sets of rules during their transitions to adulthood. In two very different societies, East Belgium and Casalguidi, the internal diversity was striking, mainly due to variations in the timing of transitions in the former case, to a complex mix of gendered patterns and life uncertainty associated to the socioeconomic position in the later case. In Central Italy, it is especially interesting to observe that within a predominantly patriarchal/patrilocal society, the socioeconomic constraints were more important that the cultural values, so that a significant number of cases of matrilocality could have been observed.

In the next revision of this paper we would especially like to explore how those variations were combined in a more or less efficient socioeconomic system at the community level.

References

